基于加权混合融合变形的虚拟人情感表达
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2020YFC2004100)


Blendshape-Based Emotional Expressions Generation for Virtual Human
Author:
Affiliation:

Fund Project:

This work is supported by National Key Research and Development Program of China (2020YFC2004100)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着相关技术的发展,基于虚拟现实的人机交互技术越来越受到人们的关注。虚拟人作为一种直观的交互对象,在虚拟现实环境中扮演着十分重要的角色。在构建富有亲和力的虚拟人的过程中,制作虚拟人情感表达不可或缺。目前,主流的三维虚拟人情感表达主要依赖设计师手动制作面部表情动画,过程冗长,耗时费力。针对上述问题,该研究提出一种基于加权混合融合变形的虚拟人情感表达生成方法。该方法可以基于任意给定人脸表情图像,估计出三维虚拟人的目标混合形状(blendshape)的系数,进而自动化生成三维人类表情动画。实验结果表明,该方法具有较强的通用性和可迁移性,可有效减轻设计师制作情感表达面部动画时的工作量。

    Abstract:

    With the rapid development of related technology, the virtual reality is attracting increasing attention. As an intuitive object for human-computer interaction, the virtual human plays an important role in the virtual environment. During the process of building plausible virtual human, one crucial step is to create emotional facial expressions. The mainstream methods often rely on hand-crafted efforts by designers, resulting a laborious and time-consuming task. To address this problem, this paper introduces a method that generates emotional expressions based on manipulating blendshapes. Given an arbitrary facial expression image, this method estimates the corresponding blendshape coefficients, which can be used to generate the target emotional expression on the virtual human face. Experiment results show that the proposed method has strong generalization ability and is effective on reducing the burden of human designers in the task of emotional expressions generation.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
白泽琛,姚乃明,刘 璐,等.基于加权混合融合变形的虚拟人情感表达 [J].集成技术,2023,12(4):42-53

Citing format
BAI Zechen, YAO Naiming, LIU Lu, et al. Blendshape-Based Emotional Expressions Generation for Virtual Human[J]. Journal of Integration Technology,2023,12(4):42-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-27
  • 出版日期:
文章二维码