基于多光谱和面部多区域联合的人脸活体检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

河套深港科技创新合作区深圳园区科研及创新创业项目(HZQBKCZYB2020098)


Face Anti-Spoofing Algorithm Based on Combination of Multiple Facial Regions Using Multi-Spectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在常见的人脸活体检测应用场景中,绝大多数相关技术聚焦于 RGB 图像或 IR 图像,但是这些图像缺乏足够的生物特征,容易受到层出不穷的假体人脸攻击。该文提出了一种基于面部多区域联合的 Transformer 模型,并将多光谱成像技术引入人脸活体检测任务,旨在获取人脸的独特生物特征,增加与假体的可区分性,进而提高活体检测准确率。多光谱图像拓宽了光谱范围,可获取物体更为丰富的反射特性,通过逐像元进行光谱归一化操作,可降低光照强度变化带来的影响,增强人脸反射特征区域的一致性。该文提出的算法选取多个人脸核心区域(如眼睛、鼻子、嘴巴、脸颊等)作为深度学习模型输入,构建了基于 Transformer 的神经网络模型,同时获取人脸局部区域特征和区域间关联特征,整合成完备的人脸生物特征。在自建的多光谱人脸数据集上,该文提出的方法获得了 95.72% 的活体检测准确率及 5.10% 的活体检测错分率,优于常用的人脸活体检测模型。

    Abstract:

    In the research of face anti-spoofing (FAS), most related techniques are dependent to the RGB images or IR images, which lack sufficient biometric features and are vulnerable to ever-advancing presentation attacks. In this paper, a Transformer model based on combination of multiple facial regions is proposed to introduce multi-spectral technology into the task of facial live detection, aiming to obtain unique biological features of the real faces and increase the distinguishability from the fake faces. In the proposed model, multispectral images are utilized to broaden the spectral dimension for more reflection information, which can identify various materials. Besides, a spectral normalization method is preprocessed pixel by pixel to reduce the impacts of the environmental illumination variations and enhance the consistency of facial reflection features regionally. Then multiple core facial regions, like eyes, nose, mouth and cheeks, are selected as input of the deep learning model. Furthermore, a Transformer-based model is constructed to obtain both local regional features and inter association features of different facial regions, which are integrated into complete facial biometric features to achieve facial live detection. On the author’s self-built multi-spectral facial datasets, the results show that the proposed method achieved an accuracy of 95.72% for and a misclassification of 5.10% for live detection, which is superior to commonly used FAS models.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
邓可望,赵娟,肖振中,等.基于多光谱和面部多区域联合的人脸活体检测算法 [J].集成技术,2024,13(1):72-81

Citing format
DENG Kewang, ZHAO Juan, XIAO Zhenzhong, et al. Face Anti-Spoofing Algorithm Based on Combination of Multiple Facial Regions Using Multi-Spectral Images[J]. Journal of Integration Technology,2024,13(1):72-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-06
  • 最后修改日期:2023-06-06
  • 录用日期:2023-11-27
  • 在线发布日期: 2023-11-27
  • 出版日期:
文章二维码