睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型
作者:
作者单位:

1.中国科学院深圳先进技术研究院;2.深圳市华屹医疗科技有限公司

作者简介:

通讯作者:

基金项目:

伦理声明:



Non-contact Identification Based on Millimeter-Wave Radar Cardiac Motion Signals During Sleep Monitoring: A Deep Convolution Model
Author:
Ethical statement:

Affiliation:

1.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences;2.Shenzhen HuaYi Medical Technologies Co., Ltd

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    使用毫米波雷达进行非接触式生命特征监测能够进行持续且不被察觉的身份验证,由于心脏运动受各种复杂因素影响,而调频连续波毫米波雷达在用户睡眠时能更好地对心脏数据进行监测和捕获。本文提出了一种基于心脏运动一维时序雷达信号的深度卷积神经网络身份识别的方法,并与LSTM、InceptionTime、LSTformer三种深度学习算法进行了性能对比与分析。在实验室采集到的人体静卧状态下心脏信号数据集上,各模型最终都能达到90%左右的分类精度。其中深度卷积神经网络InceptionTime准确率最高,但耗时最长,长短期记忆网络模型LSTM及LSTformer准确率较低,但耗时较短,本文提出的卷积神经网络模型准确率与InceptionTime相当,但计算耗时较短,在准确率和计算效率之间取得了平衡。

    Abstract:

    The usage of mmWave radar for non-contact vital signs monitoring has shown great potentials in the medical and healthcare fields, which enables continuous and imperceptible identity verification. Due to the complex impact of various factors on heart movement, the FMCW mmWave radar can better monitor and capture heart data during sleep, and the obtained heart data can be recognized and classified based on the uniqueness of personal heart movement characteristics. In this study, we propose a deep convolution neural network for identification recognition from one-dimensional time series data of the heart radar signal. The results were compared with 3 SOTA methods, i.e. LSTM, InceptionTime and LSTformer. All the models achieved classification accuracies about 90% on an experimentally acquired heart signal data set in sleep posture. The InceptionTime model has the highest accuracy, but it takes the longest time. The LSTM and LSTformer models have the lower accuracy but the shorter calculation time. The proposed CNN model can obtain similar accuracy but better efficiency in comparison with InceptionTime model.

    参考文献
    相似文献
    引证文献
引用本文

段玉龙,胡巍,黄毅,等.睡眠监控中基于毫米波雷达心脏信号的非接触身份识别:一种深度卷积模型 [J].集成技术,

Citing format
Duan Yulong, Hu Wei, Huang Yi, et al. Non-contact Identification Based on Millimeter-Wave Radar Cardiac Motion Signals During Sleep Monitoring: A Deep Convolution Model[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-10-30
  • 最后修改日期:2023-11-07
  • 录用日期:
  • 在线发布日期: 2024-07-16
  • 出版日期: