人工智能可解释性的研究现况及在医学领域的应用效果评测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP30

基金项目:

国家自然科学基金项目(U22A2041)


Current Research Status of Explainability in Artificial Intelligence and Evaluation of Its Application Effects in Medical Fields
Author:
Affiliation:

Fund Project:

This work is supported by National Natural Science Foundation of China (U22A2041)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工智能可解释性指人们理解和解释机器学习模型决策过程的能力。该领域的研究旨在提高机器学习算法的透明度,使其决策更加可信和可解释。可解释性在人工智能系统中至关重要,尤其是在医疗、金融和法律等敏感和关键的决策领域。提供可解释性有助于人们更好地理解模型决策背后的逻辑推理,从而确保其决策过程的公正性和稳健性,并符合伦理标准。在不断发展的人工智能领域,提高模型可解释性是实现可信、可持续发展人工智能的关键一步。该文概述了人工智能可解释的发展历史和各种可解释方法的技术特点,在医疗领域的可解释性方面进行了更深入的探讨。此外,该文还对当前各种人工智能可解释方法在医学影像数据集上的局限性进行了分析,并提出了未来可能的探索方向。

    Abstract:

    Artificial intelligence interpretability refers to the ability of people to understand and interpret the decision-making process of machine learning models. Research in this field aims to improve the transparency of machine learning algorithms, making their decisions more trustworthy and explainable. Interpretability is crucial in artificial intelligence systems, especially in sensitive and critical decision-making domains such as healthcare, finance, and law. By providing interpretability, people can better understand the reasoning behind the model’s decisions, ensuring that they are fair, robust, and ethical. In the continuously evolving field of artificial intelligence, enhancing the interpretability of models is a key step towards achieving trustworthy and sustainable AI. This article outlines the development history of interpretable artificial intelligence and the technical characteristics of various interpretability methods, with a particular focus on interpretability in the medical field. It provides a more in-depth discussion of the limitations of current methods on medical imaging datasets and proposes possible future directions for exploration.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
何晓曦,蔡云鹏.人工智能可解释性的研究现况及在医学领域的应用效果评测 [J].集成技术,2024,13(6):76-89

Citing format
HE Xiaoxi, CAI Yunpeng. Current Research Status of Explainability in Artificial Intelligence and Evaluation of Its Application Effects in Medical Fields[J]. Journal of Integration Technology,2024,13(6):76-89

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-12
  • 最后修改日期:2024-03-12
  • 录用日期:
  • 在线发布日期: 2024-04-15
  • 出版日期:
文章二维码