基于文本增强的眼底图像多病种识别方法
作者:
作者单位:

1.南方科技大学;2.中国科学院深圳先进技术研究院

作者简介:

通讯作者:

中图分类号:

TP391,R77

基金项目:

深圳市技术攻关项目(JSGG20220831105002004)


Multi-disease Recognition Method for Fundus Images Based On Text Enhancement
Author:
Affiliation:

1.Southern University of Science and Technology;2.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Fund Project:

Science and Technology Research Funding of Shenzhen (JSGG20220831105002004)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究在眼科图像疾病识别中引入了视觉语言模型这一新的范式,提出了一种基于对比语言图像预训练模型的多疾病识别算法。首先,基于多个公开可用的眼底图像数据集构建了一个含有8个类别的多标签眼底图像数据集MDFCD8;然后利用生成式人工智能GPT-4生成描述眼底图像细粒度病理特征的专家知识,解决了眼底图像数据集文本标签缺乏的问题。实验结果表明,与传统的卷积神经网络和Transformer网络相比,本文提出的方法在性能上分别高出4.8%和3.2%。同时,本文还进行了各模块的消融实验,验证了该方法的有效性,显示了视觉语言模型在眼科疾病辅助诊断领域的应用潜力。

    Abstract:

    In this work, a new paradigm of visual language modeling is introduced in ophthalmic image disease recognition. And a multi-disease recognition algorithm based on a pre-trained model of contrasting language images is proposed. First, a new multi-labeled fundus image dataset MDFCD8 containing 8 categories is constructed based on several publicly available fundus image datasets. Then, the generative artificial intelligence GPT-4 is utilized to generate expert knowledge describing the fine-grained pathological features of fundus images, which solves the problem of the lack of text labels in fundus image datasets. The experimental results showed that, the proposed method outperforms the traditional convolutional neural network and Transformer network by 4.8% and 3.2%, respectively. This study also conducted ablation experiments on each module to validate the effectiveness of the method, and also demonstrated the potential of visual language modeling in ophthalmic disease research.

    参考文献
    相似文献
    引证文献
引用本文

熊绍奎,陈世峰.基于文本增强的眼底图像多病种识别方法 [J].集成技术,

Citing format
XIONG Shaokui, CHEN Shifeng. Multi-disease Recognition Method for Fundus Images Based On Text Enhancement[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:2024-04-22
  • 录用日期:
  • 在线发布日期: 2024-06-11
  • 出版日期:
文章二维码