三维高斯泼溅技术在场景重建中的 现状与挑战
CSTR:
作者:
作者单位:

北京交通大学,自动化与智能学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家重点研发计划任务(2022ZD0205005),研究生创新项目(2023YJS142)。


3D Gaussian Splatting: Research Status and Challenges in Scene Reconstruction
Author:
Affiliation:

School of Automation and Intelligence, Beijing Jiaotong University

Fund Project:

National Science and Technology Innovation 2030 (STI2030) Major Projects under Grant 2022ZD0205005 and in part by the Fundamental Research Funds for the Central Universities under Grant 2023YJS142.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    三维场景重建是自动驾驶、机器人等领域的重要研究课题,在导航建图、环境交互、虚拟和增强现实等任务中有着广泛应用。目前基于深度学习的重建方法从场景表示方式和核心建模技术角度主要分为五类:基于代价体积的深度估计方法、基于截断的有符号距离函数(TSDF)的体素方法、基于Transformer架构的大规模前馈方法、基于多层感知机(MLP)的神经辐射场(NeRF)、三维高斯泼溅(3DGS)。每类方法都有其独特的优势和局限,而新兴的3DGS方法通过高斯函数显式的表示场景,并利用高效的光栅化操作实现场景的快速渲染和新视角合成。最大优势是它相比著名的神经辐射场方法采用MLP网络表示场景信息的建模方式不同,能够在保证高效渲染的同时还具有可解释性且可编辑,这为三维场景进行准确的重建铺平了道路。然而,3DGS在场景重建任务中的应用仍然面临着许多困难和挑战。基于此,本文首先对3DGS的基本概念进行简单介绍,并与上述其余四类方法进行特点比较。然后,对现有3DGS重建算法进行系统性的调研后,对这类方法要解决的关键问题进行总结,并结合典型实例对相关核心难题的研究现状进行综述。最后,对未来更有可能探索的新研究方向进行了展望。

    Abstract:

    3D scene reconstruction is a critical research topic in autonomous driving, robotics, and related fields, with extensive applications in navigation mapping, environmental interaction, and virtual/augmented reality tasks. Current deep learning-based reconstruction methods can be primarily categorized into five groups from the perspectives of scene representation and core modeling techniques: cost volume-based depth estimation methods, truncated signed distance function (TSDF)-based voxel approaches, transformer architecture-based large-scale feedforward methods, multilayer perceptron (MLP)-based neural radiance fields (NeRF), and 3D Gaussian Splatting (3DGS). Each category exhibits unique strengths and limitations. The emerging 3DGS method distinguishes itself by explicitly representing scenes through Gaussian functions while achieving rapid scene rendering and novel view synthesis via efficient rasterization operations. Its most significant advantage lies in diverging from NeRF''s MLP-based scene representation paradigm - 3DGS ensures both efficient rendering and interpretable editable scene modeling, thereby paving the way for accurate 3D scene reconstruction. However, 3DGS still faces numerous challenges in practical scene reconstruction applications. Based on this analysis, this paper first provides a concise introduction to 3DGS fundamentals and conducts comparative analysis with the aforementioned four categories. Following a systematic survey of existing 3DGS reconstruction algorithms, we summarize the key challenges addressed by these methods and review current research progress on core technical difficulties through representative case studies. Finally, we prospect potential future research directions worthy of exploration.

    参考文献
    相似文献
    引证文献
引用本文

朱东林,陈淼,毛宇岩,等.三维高斯泼溅技术在场景重建中的 现状与挑战 [J].集成技术,

Citing format
Zhu Donglin, Chen Miao, Mao Yuyan, et al.3D Gaussian Splatting: Research Status and Challenges in Scene Reconstruction[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-27
  • 最后修改日期:2025-03-13
  • 录用日期:2025-03-14
  • 在线发布日期: 2025-03-18
  • 出版日期:
文章二维码