基于冠豪猪优化器-改进双向时间卷积网络-长短期记忆网络和注意力机制的动力锂电池健康状态预测
CSTR:
作者:
作者单位:

1.湖北汽车工业学院;2.汉江国家实验室

作者简介:

通讯作者:

中图分类号:

TM912;TP183

基金项目:

湖北省自然科学基金计划(十堰创新发展联合基金)培育项目(2024AFD116);湖北省教育厅科学技术研究计划重点项目(D20231805);湖北汽车工业学院博士科研启动基金(BK202307,BK201604);湖北省自然科学基金(青年项目)(2023AFB481)


Prediction of state of health of power lithium battery based on CPO-IBiTCN-LSTM and attention mechanism
Author:
Affiliation:

1.Hubei University Of Automotive Technology;2.Hanjiang National Laboratory

Fund Project:

Natural Science Foundation of Hubei Province of China (Joint Fund for Innovation and Development of Shiyan) (2024AFD116); Key Project of Science and Technology Research Plan of Hubei Provincial Department of Education (D20231805); Doctoral Research Start-up Fund of Hubei University of Automotive Technology (BK202307, BK201604); Natural Science Foundation of Hubei Province of China (2023AFB481)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了更好的监测动力锂电池健康状态。提出一种基于改进双向时间卷积网络、长短期记忆网络和注意力机制的锂电池健康状态预测方法。使用冠豪猪优化器对所提方法的超参数进行寻优。在马里兰大学锂电池充放电数据集中进行测试,提取和容量相关健康特征,通过皮尔逊相关系数筛选相关度较高的健康特征作为神经网络算法的输入。提出的方法在所有电池健康状态预测的均方根误差均不超过0.020,平均绝对误差不超过0.017,决定系数在0.995以上。在锂电池健康状态预测可以实现较高的精度。

    Abstract:

    In order to better monitor the health state of power lithium batteries. A lithium battery health state prediction method based on Improved Bidirectional Temporal Convolutional Network, Long Short Term Memory Network and Attention Mechanism is proposed. The hyperparameters of the proposed method are optimized using Crested Porcupine Optimizer. Tests were conducted on the University of Maryland lithium battery charge/discharge dataset to extract capacity-related health features, and the health features with higher correlation were screened by Pearson correlation coefficient as inputs to the neural network algorithm. The Root Mean Squard Error of the proposed method is no more than 0.020, the Mean Absolute Error is no more than 0.017, and the R-Square is above 0.995 for all battery health state predictions. Higher accuracy can be achieved in lithium battery health state prediction.

    参考文献
    相似文献
    引证文献
引用本文

邢泽铭,龚家元,陈鸿洋,等.基于冠豪猪优化器-改进双向时间卷积网络-长短期记忆网络和注意力机制的动力锂电池健康状态预测 [J].集成技术,

Citing format
Xing Ze Ming, Gong Jia Yuan, Chen Hong Yang, et al. Prediction of state of health of power lithium battery based on CPO-IBiTCN-LSTM and attention mechanism[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-07
  • 最后修改日期:2025-03-20
  • 录用日期:2025-03-21
  • 在线发布日期: 2025-03-21
  • 出版日期:
文章二维码