1.湖北汽车工业学院;2.汉江国家实验室
TM912;TP183
湖北省自然科学基金计划(十堰创新发展联合基金)培育项目(2024AFD116);湖北省教育厅科学技术研究计划重点项目(D20231805);湖北汽车工业学院博士科研启动基金(BK202307,BK201604);湖北省自然科学基金(青年项目)(2023AFB481)
1.Hubei University Of Automotive Technology;2.Hanjiang National Laboratory
Natural Science Foundation of Hubei Province of China (Joint Fund for Innovation and Development of Shiyan) (2024AFD116); Key Project of Science and Technology Research Plan of Hubei Provincial Department of Education (D20231805); Doctoral Research Start-up Fund of Hubei University of Automotive Technology (BK202307, BK201604); Natural Science Foundation of Hubei Province of China (2023AFB481)
邢泽铭,龚家元,陈鸿洋,等.基于冠豪猪优化器-改进双向时间卷积网络-长短期记忆网络和注意力机制的动力锂电池健康状态预测 [J].集成技术,
Citing format
Xing Ze Ming, Gong Jia Yuan, Chen Hong Yang, et al. Prediction of state of health of power lithium battery based on CPO-IBiTCN-LSTM and attention mechanism[J]. Journal of Integration Technology.