基于Transformer编码器的脑血流速度重建模型研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R318

基金项目:


Research on A Transformer Encoder-Based Model for Cerebral Blood Flow Velocity Reconstruction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑血流速度(cerebral blood flow velocity,CBFV)重建在脑血管功能评估中具有重要作用,尤其是在脑血管疾病的早期诊断、治疗方案优化和脑卒中预防方面。现有的CBFV重建方法在处理多变量时间序列信号时面临精度和效率的挑战,尤其是在数据稀缺和复杂信号处理的背景下。本研究提出一种基于Transformer编码器的多变量时间序列模型,通过动脉血压和CO2时间序列信号进行高精度的CBFV重建。该模型设计基于长短期记忆网络模块,不仅有效弥补了全局注意力机制在处理局部信息方面的不足,还增强了局部特征学习,并采用混合损失函数优化局部波形误差,提升了重建精度。此外,为应对目标域数据稀缺问题,本研究引入了基于动脉血压与心电图信号关联的迁移学习策略,减轻了数据不足对模型性能的影响。实验结果表明,该模型在CBFV重建任务中的表现优于传统回归模型和深度学习模型,皮尔逊相关系数为0.51870,动态时间规整距离为17.879,互信息为0.34375,且能在0.04 s内完成200个数据点的重建。本研究验证了该方法在精准医疗中的有效性,并为临床诊断、疾病预防和个性化治疗提供了创新性的解决方案,具有广泛的应用前景,尤其是在医学信号处理、智能医疗和健康监测领域。

    Abstract:

    Cerebral blood flow velocity (CBFV) reconstruction plays a crucial role in evaluating cerebrovascular function, particularly in the early diagnosis of cerebrovascular diseases, optimizing treatment plans, and preventing strokes. Existing CBFV reconstruction methods face challenges in accuracy and efficiency when processing multivariate time-series signals, particularly in the context of data scarcity and complex signal processing. This study proposes a multivariate time-series model based on a Transformer encoder, which achieves high-precision CBFV reconstruction using arterial blood pressure and CO2 time-series signals. The model design is based on a long short-term memory module, which effectively compensates for the limitations of the global attention mechanisms in processing local information and enhances local feature learning. Additionally, a hybrid loss function is employed to optimize local waveform errors, improving reconstruction accuracy. Furthermore, to address the issue of data scarcity in the target domain, this study introduces a transfer learning strategy based on the correlation between arterial blood pressure and electrocardiogram signals, alleviating the impact of limited data on model performance. Experimental results demonstrate that the proposed model outperforms traditional regression and deep learning models in the CBFV reconstruction task, with a Pearson correlation coefficient of 0.51870, a dynamic time warping distance of 17.879, and mutual information of 0.34375, while completing the reconstruction of 200 data points in 0.04 s. The study validates the effectiveness of this method in precision medicine and provides innovative solutions for clinical diagnosis, disease prevention, and personalized treatment, with broad application prospects, particularly in medical signal processing, intelligent healthcare, and health monitoring.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
刘高城,童嘉博,杨仕林,等.基于Transformer编码器的脑血流速度重建模型研究 [J].集成技术,2025,14(3):102-118

Citing format
LIU Gaocheng, TONG Jiabo, YANG Shilin, et al. Research on A Transformer Encoder-Based Model for Cerebral Blood Flow Velocity Reconstruction[J]. Journal of Integration Technology,2025,14(3):102-118

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-18
  • 最后修改日期:2025-02-10
  • 录用日期:
  • 在线发布日期: 2025-05-09
  • 出版日期:
文章二维码